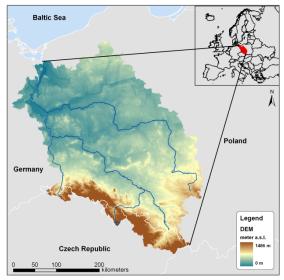
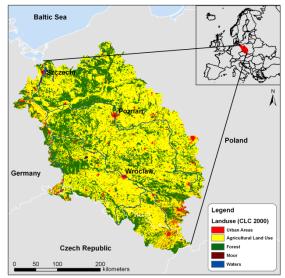


AMBER annual meeting 21. – 23. March 2011 Warnemünde

Modelling future nutrient emissions Effects of socio-economic development and climate change on scenario calculations in the Oder River Basin

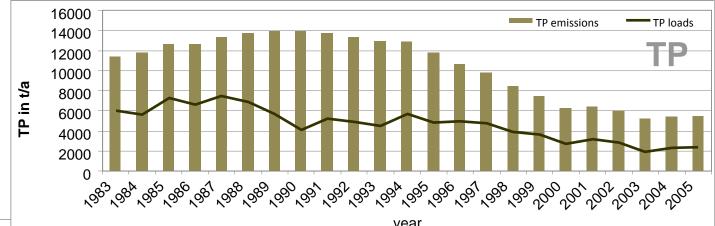
Jens Hürdler & Markus Venohr
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Inga Krämer & Gerald Schernewski
Leibniz-Institute for Baltic Sea Research (IOW)

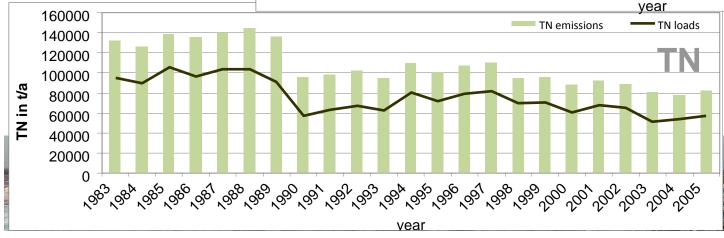




Research area – Oder River Basin

- Located in the south of the Baltic Sea
- 118.000 km² catchment area distributed to Poland (89%), Czech Republic (6%) and Germany (5%)
- 60% of catchment area under agricultural use
- 15.5 million Inhabitants mainly distributed to bigger cities and urban agglomerations
- With start of 1990's serious transformation processes in agriculture occurs
- Oder is one of the most important nutrient emitters into the Baltic Sea



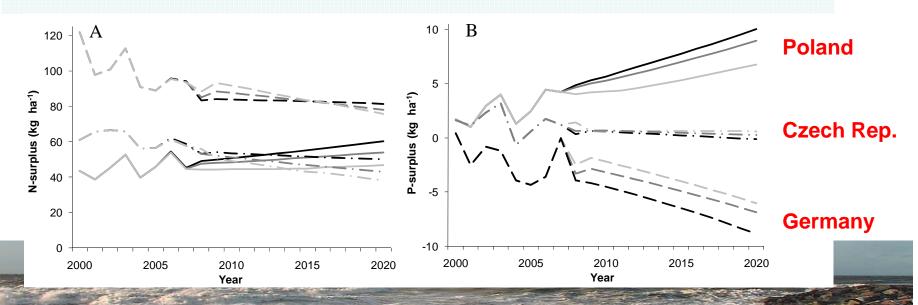


Development of TN and TP emissions between 1983 and 2005

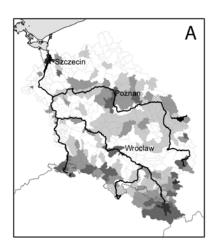
- Significant decrease of TN (total nitrogen) emissions at starting nineties
- Followed by in- and decreasing TN emissions until present-day level
- Increase of TP (total phosphorus) emissions until maximum at ending eighties, followed by continuous decrease, because of P-storage in soil

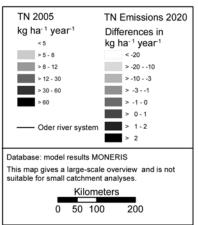
1. Future scenarios on the Oder river basin – lagoon – coastal sea system until 2020 (IOW, IGB and IÖW)

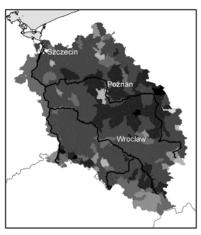
Krämer, I., J. Hürdler, J. Hirschfeld, M. Venohr, G. Schernewski (accepted): Nutrient fluxes from land to sea: consequences of future scenarios on the Oder river basin -- lagoon -- coastal sea system. International Review of Hydrobiology

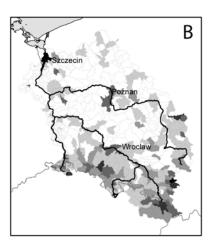

2.

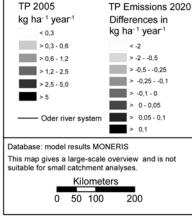
3.

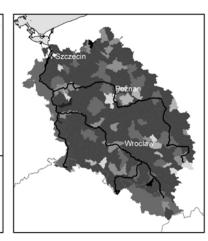


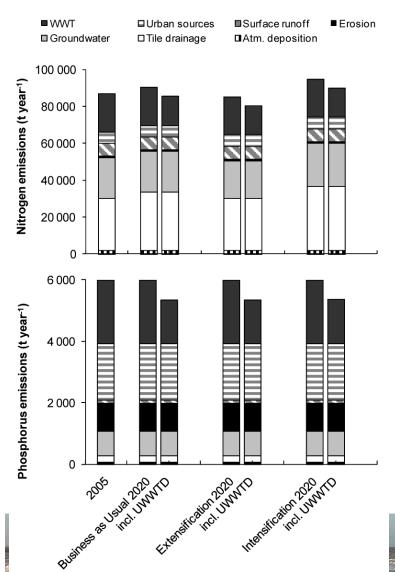

-	Business as usual	Liberalisation	Regionalisation
	"BAU 2020"	"LIB 2020"	"REG 2020"
	Implementation of actual European agricultural strategies (CAP)	 Assumption of totally liberalised EU agricultural market No political interventions in land use Extensification of land use 	 Still subsidised EU- agriculture Protection of EU- agricultural market Intensification of land use











- Differences between nutrient emissions by "intensification" scenario 2020 and the recent state 2005
- General decreasing trends in CZ and GER Oder catchment parts
- Increasing emission trend for PL parts
- Positive effects by application of EC UWWTD

	TN (kg ha ⁻¹ year ⁻¹)		TP (kg ha ⁻¹ year ⁻¹)	
	without UWWTD	incl. UWWTD	without UWWTD	incl. UWWTD
2005	7	.3	0.	48
Scenarios 2020				
'Business as usual'	7.6	7.2	0.48	0.43
'Extensification'	7.2	6.8	0.48	0.43
'Intensification'	8.0	7.6	0.48	0.43
Wildcards 2020				
'Energy maize'	8.4	7.9	0.48	0.43
'Animal stocks'	8.7	8.2	0.48	0.43
'Transfer'	9.0	8.6	0.48	0.43

- Progress of TN and TP emissions into the Oder river system by socioeconomic development scenarios, with and without application of EC-UWWTD
- Effect to spatial distribution of nutrient emissions, heavy effect by "wildcard simulations"

- Future scenarios on the Oder river basin lagoon coastal sea system until 2020 (IOW, IGB and IÖW)
- 2. Combined effects of socio-economic development and climate change scenarios until 2020 (IGB)

(1 publication in preparation, 3 Presentations, 1 Poster)

3.

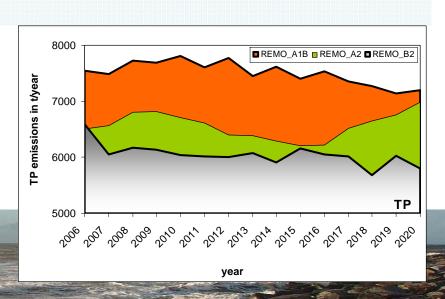
- Modelling nutrient emissions and loads by MONERIS (MOdelling Nutrient Emissions in RIver Systems) http://moneris.igb-berlin.de
- Application of scenarios
 - Socio-economic development scenarios until 2020 (Jesko Hirschfeld, IÖW Berlin)
 - Climate scenarios until 2020 (REMO)
 - IPCC scenarios A1B, A2 and B2
 - Comparative high precipitation and run off values

Business as usual	Liberalisation	Regionalisation
"BAU 2020"	"LIB 2020"	"REG 2020"
Implementation of actual European agricultural strategies (CAP)	 Assumption of totally liberalised EU agricultural market No political interventions in land use Extensification of land use 	 Still subsidised EU-agriculture Protection of EU-agricultural market Intensification of land use

Range of possible nutrient emissions until 2020

 Climate scenarios in combination with socio-economic development scenarios, without UWWTD application

Upper border: "regionalisation" scenario combined with


climate scenario A1B conditions

Lower border: "liberalisation" scenario combined with

climate scenario B2 conditions

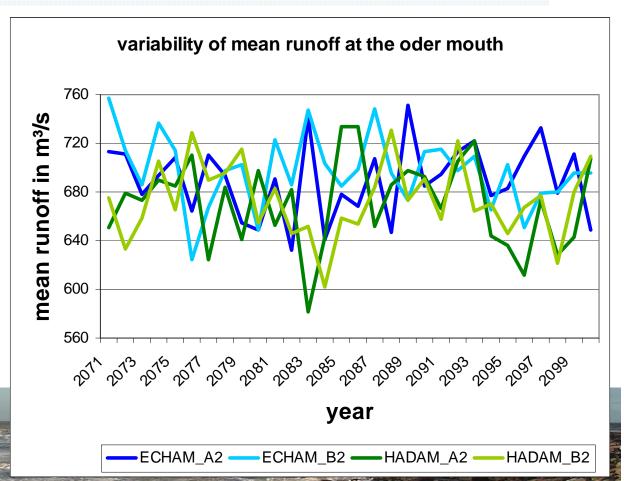
Basically decreasing trend

- Mean emissions by long term conditions 7.3 kg/(ha-yr) TN and 0.48 kg/(ha-yr) TP
- Low changes due to socio-economic development scenarios, without UWWTD application
- Higher changes by combined modelling

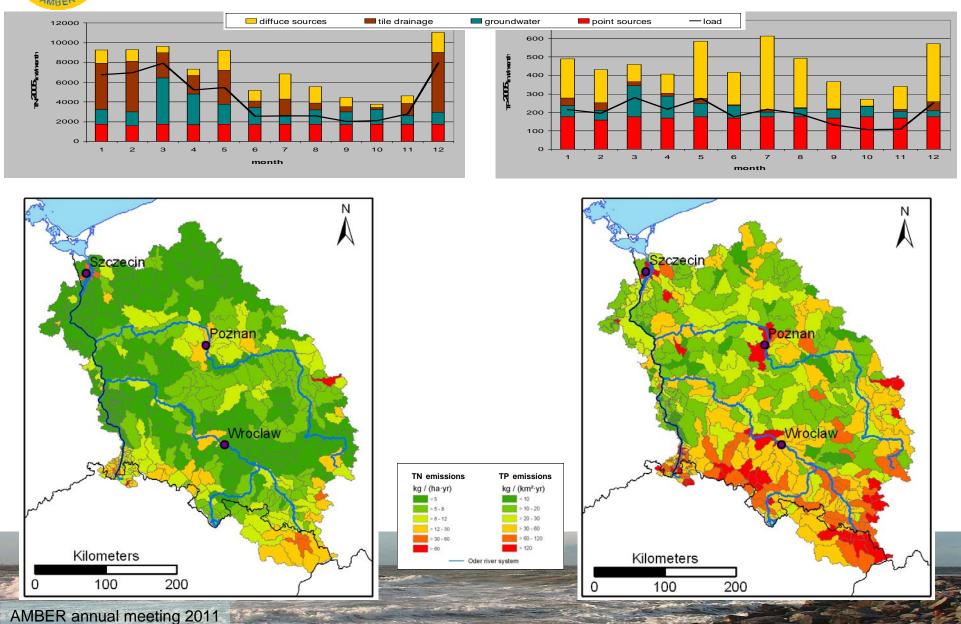
		socio-economic development scenarios			
		BAU 2020	LIB 2020	REG 2020	
1	n climate -2005)	7.6	7.2	8.0	TN in kg/(ha⋅yr)
`	litions	0.48	0.48	0.48	TP in kg/(ha⋅yr)
	REMO A1B	8.9	8.4	9.4	TN in
	REMO A2	8.3	7.8	7.8 8.7	kg/(ha·yr)
climate	REMO B2	6.7	6.4	7.1	kg/(Ha·yi)
scenarios	REMO A1B	0.61	0.60	0.61	TP in
	REMO A2	0.59	0.59	0.59	kg/(ha∙yr)
	REMO B2	0.49	0.49	0.49	

- Future scenarios on the Oder river basin lagoon coastal sea system until 2020 (IOW, IGB and IÖW)
- Combined effects of socio-economic development and climate change scenarios until 2020 (IGB)
- 3. Future scenario calculations for the period 2071-2100 by use of climate change scenarios (IGB)

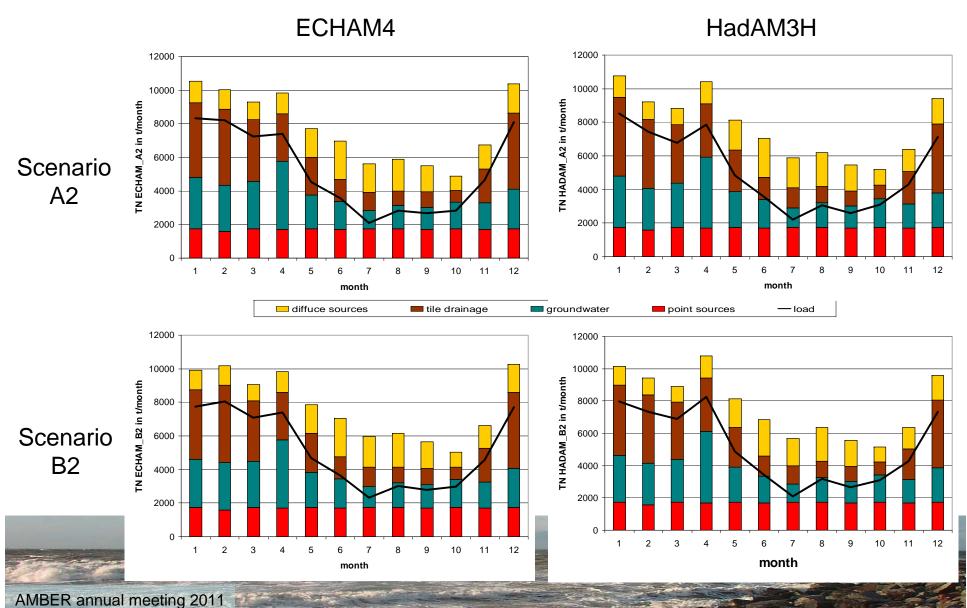
(1 publication ...)


- Modelling nutrient emissions and loads by MONERIS (MOdelling Nutrient Emissions in RIver Systems) http://moneris.igb-berlin.de
- For the comparison of different nutrient emission and load situations, climate scenarios (Models: ECHAM4 & HADAM3H; Scenarios A2 & B2) for the time period between 2071-2100 and the year 2005 were used
- In case of climate scenarios:
 - we used the relative changes in **precipitation** up to a mean precipitation in the control scenario and add it to a mean value in the validated time period (1983-2005)
 - we derived runoff values by a factor based on each AU and month between precipitation and runoff, this factor was applied to the precipitation values of the climate scenarios

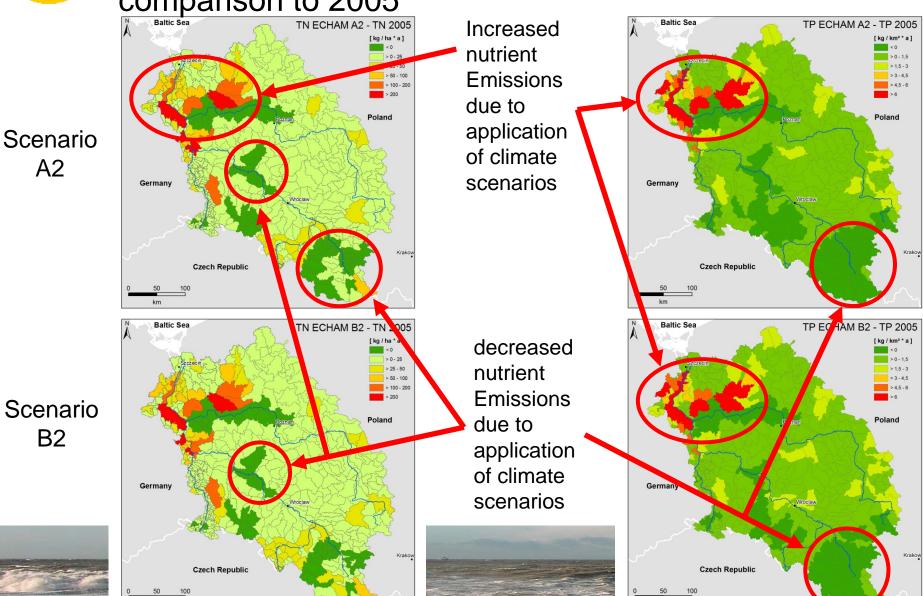
- Period of reference, validated by measured values (mean runoff 1983-2005 566 m³/s)
- Runoff by climate scenarios can not be validated


mean run off 2071-2100 in m³/s		
ECHAM_A2	690	
ECHAM_B2	697	
HADAM_A2	671	
HADAM_B2	674	

YEAR 2005: monthly variation & annual spatial distribution of nutrient emissions



2071 – 2100 : mean monthly variation in nutrient emissions and loads



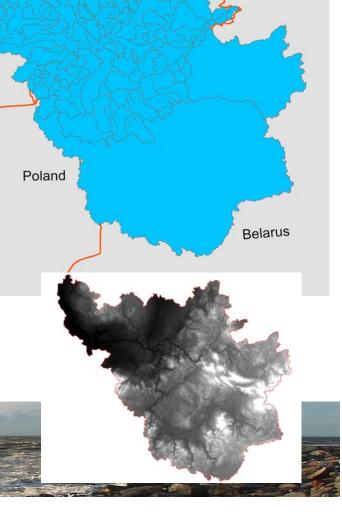
ECHAM4 2071-2100 : mean (2071-2100) annual differences in nutrient emissions in

comparison to 2005

Conclusion

- Climate change scenarios are highly affecting the combined scenario calculations
- Only low changes in emission conditions by basic socio-economic development scenarios
- Consideration of land use changes like energy crops (maize, rape...)or increased animal protein consumption is necessary

Research area - Nemunas River Basin


Latvia

Nemunas Sub-catchments by CORPI (Arturas)

 Build up the Database for MONERIS with the given datasets:

- Landcover
- •DEM (90m SRTM)
- Pedology data
- Settlements
- River system
- •GPCC
- Update the model by run off and water quality data (monthly values between 2001 and 2006)
- Implementation of WWTP data

Lithuania

Russia

AMBER annual meeting 2011

Thank you for your attention